If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-576=0
a = 1; b = 4; c = -576;
Δ = b2-4ac
Δ = 42-4·1·(-576)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{145}}{2*1}=\frac{-4-4\sqrt{145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{145}}{2*1}=\frac{-4+4\sqrt{145}}{2} $
| 4x/5=8/2 | | 2b+3(b-6)=-2(2b-14)+98 | | 14n=11n-6 | | 9x^2-36x-1728=0 | | x+42=3x+6 | | 9n+4=50 | | 7x+3x+100=250 | | m÷2+4=10 | | 7x+11=3(x+4 | | _32+40_6k+2+8=0 | | 3x-2x(2)=7 | | 6x+8=58+x | | 5x-(2x+9)=5x-49 | | 5x+20=31 | | 7=a-9.2~3 | | m/5-1=8 | | 5-2(x-6)=4 | | x/200=5 | | 5a+6=29 | | -7(5-3x)=91 | | 180(n-2)=140º | | 4.4(3.4r-1)=96.2 | | 2x/3(12x-5)=0 | | F(x)=75x+2003 | | 38+46/4=s | | 5a(a+7)-2(a-3)=0 | | 9x(x+9)=81 | | 6x-20=3x+5 | | 11x-5=2x+2 | | 14n=11n+6 | | -7x-2=-5x-0.9 | | 1.73=2^x |